2007年9月29日 星期六

雜記20070929

1) 無意間看了今晚亞視播的一個節目的最後兩分鐘,講資優教育。有一幕見到數學資料庫的A小姐,在九龍塘新建的馮漢柱中心,望著科大數學系Ph. D. Year 1學生S同學的壁報。


2) 舊聞。早前Yongky上報紙,有張相,坐他旁邊是我MATH310的一個學生。今日tutorial見到他,有以下對話:

我:Hey, you know Yongky?
佢:Yongky?
我:ngng... I mean Utama Yongky?
佢:Utama?
我:OK... I mean the fat Indonesian guy.
佢:(Think for a while) Oh, you mean that guy... I don't know him.
我:Then how come you took a photo with him? The photo is published in a newspaper.
佢:Yes, one professor shows me that newspaper. It is just AN ACCIDENT.


3) 星期四做ACM題目時見到的一張圖:

2007年9月26日 星期三

TA求其記 (2)

MATH232第一份功課。之前有學生問我:「我係咪求其寫D野落去,如果idea啱,咁你就俾分?」我答:「如果個idea係啱既,我無理由唔俾分你既。」他回應:「咁我真係求其寫D野落去啦喎。」


少說也有七年改卷經驗,雖然大部分都是answer only,但偶然也會改改有證明的功課,所以問題本來不大。不過combinatorics是一個很特別的課題,有時一題的solution可以一個數字或數式都沒有,有的就是一大堆英文字母,或者一堆圖。因此其邏輯推進更難被看出。學生表達能力較差的,可以將一個簡單的solution寫得亂七八糟。亦因此,曾有IMO HK committee指IMO最難改的題目就是combinatorics的題目。


結果改了三份功課,最少有五處的邏輯推進是錯的。功課第一題是這樣的:


A m times n chessboard, with m and n both odd, has the upper left corner coloured white. All boxes neighboring to a white box are black, and all boxes neighboring to a black box are white. Now, an arbitrary white box is removed from the chessboard. Prove that the remaining board can be perfectly covered by 1 times 2 dominoes.




稍有經驗的都應該猜到第一個「證明」是這樣的:


In the original board there are (mn+1)/2 white boxes and (mn-1)/2 black boxes. After removing a white box, the number of white boxes is same the number of black boxes. Hence, the remaining board can be perfectly covered.


以上的「證明」有甚麼不妥,自己想一想吧。我只是想說,到了改功課後期,當我見到學生寫這樣的「證明」時,我打從心底裏發出變態的高興。總好過見到一些在這題寫了兩版(還要連圖都沒有一張……)的人,然後在中間有一處是錯誤的邏輯推進。




看了第二個「證明」後,我自己傻笑了十幾秒:


Consider a 1 times 3 board. Obviously there is a perfect cover after removing any of the 2 available boxes. Now, we assume that we have a perfect cover for 1 times (2k+1) board. Then for 1 times (2k+3) board, we can divide the board into 2 parts, one part being 1 times (2k+1) and the other part is 1 times 2. Both parts can be perfectly covered by induction assumption, so 1 times (2k+3) board can be perfectly covered after removing any white box. By mathematical induction, 1 times n board, where n is odd, can be perfectly covered after removing any white box.

An induction on x coordinate again will lead to the result.


曾經聽過有人說,在香港和英國讀會考高考的人,要證明一個命題(編按:特別是涉及正整數m、n之類的命題),他們會很努力地嘗試用induction。




以為上面的「證明」已經夠完美,怎知出了第三個「證明」:


Without loss of generality, we can assume that the removed white box is the left-upper corner one. Blah blah blah...


又曾經聽過有人說,IMO training出身的人很喜歡"WLOG"這四隻字母。看來我該查一查這位學生是否曾參與IMO training。

2007年9月24日 星期一

A Reply

早前有人問我MATH232和MATH310的grade composition。我說網上面有(MATH310沒有,我也不知道,我叫他自己找人問),並給了他三個連結自己找。


同一個人今天send一封電郵來,再次問我兩個courses的grade composition……和考試地點……全部都網上有……


這條 _____ 還要是讀Computer Science的。於是我這樣回:


Hi,

Last time I have told you that these information, except the grade composition of MATH310, are all available on Dr. Chen and my website. And I have told you to ask your MATH310 coursemates about the grade composition. I do not know this at all.

I am not sure you send this email through Outlook or Thunderbird or not. If it is the case, may I introduce Mozilla Firefox, which is a free software, to you? It is a browser. The definition of browser is a software that you can use to take a look of the two websites I have given to you. The only thing you need to do is to type the following websites:

http://www.math.ust.hk/~mabfchen/Math232/index.htm

http://ihome.ust.hk/~emdiash/MATH310/index.html (the midterm details are within Assignment 3)

and then press "Enter". Easy enough?

Once upon a time, I used a software called M$ Internet Explorer to do the same thing. As a CS-major student, hopefully you have heard this. And, hopefully, you should know that there is many useful information on the Internet.

Dick

2007年9月23日 星期日

Team Hoyt 與 斌仔

http://www.teamhoyt.com/history.shtml


看完之後,難免會想起斌仔。看完之後,我仍然覺得斌仔爭取安樂死是正確的。